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Structure types 
Ordering of Fe atoms in layers leads to the formation of different 

superstructures



Concentration dependence of critical temperatures of 

magnetic transformations in the system FexTiS2

M. Inoue et al., Advances in Physics, 38 (1989) 565
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Puzzle #1

a discrepancy in the data



Fe0.25TiS2 : magnetization behavior 

Hc(T) = Hc(0)⋅exp (–αT) 

It looks like it's a ferromagnet !
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Field-induced phase transition to a metastable high coercive 

ferromagnetic state! 

XMCD experiments: orbital magnetic moment in Morb  0.25 – 0.6 μB/Fe in FexTiS2 (Shibata et 

al., J.Phys. Chem. C 125 (23), (2021)12929)

Remnant MR

Fe0.25TiS2 : magnetoresistance

Giant MR implies it's an antiferromagnet !
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Fe0.25TiS2 : neutron diffraction

The appearance of new magnetic reflections upon cooling indicates the 

formation of an AFM order which is transformed to the FM state under 

application of a magnetic field.

What happens if we increase the Fe content?
A. Podlesnyak, M. Frontzek

Neutron Scattering Division, Oak Ridge National 

Laboratory, Oak Ridge, USA
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superstructure



Fe0.33TiS2 : absence of a long-range magnetic order

Absence of a long-range magnetic order may result from frustrations of exchange

interactions due to the formation of a triangular network of Fe atoms in the ab plane

Cluster glass behavior! No long-range magnetic order!

Broad diffuse magnetic maximum indicates the appearance of short-range magnetic 

correlations with cooling below 50 K.    
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Fe0.5TiS2 : reappearance of a long-range magnetic 

order

AFM order transforms into metastable FM state in applied magnetic fields.

The field-induced FM state is stabilized by magnetoelastic interactions. 
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Fe0.75TiS2 and Fe0.85TiS2 : ferrimagnetic ordering ?
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Mixing of  Ti and Fe atoms in cationic layers ?
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FexTiS2 : changes in magnetic state and coercivity

CG →AFM → CG →AFM → FI Iron content ↑

Magnetic states and magnetic properties of FexTiS2 closely relate with the

concentration of Fe atoms and their distribution over the lattice
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Puzzle #2
Spin state of iron in intercalated and substituted layered compounds 

FexTaCh2 and FexTa1-xCh2 (Ch = S, Se)

Various methods of preparation and heat treatment do not have a strong effect on the 

lattice parameters of the main phase in the samples, but they significantly affect the 

magnetic critical temperature and magnetic hysteresis of the samples 13



Fe atoms:

the transition from low-spin (LS) 

to high-spin (HS) state 

with increasing temperature 

in the range 200 – 400 K*

Spin state of iron in intercalated and substituted layered 

compounds FexTaCh2 and FexTa1-xCh2 (Ch = S, Se)

[*] K-T. Ko et al., Phys. Rev. Lett. 107, 247201 (2011) 14
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Low-spin (LS) state Fe2+ (3d6)

S = 0 S = 2

t2g

eg

t2g

eg

Depends on the splitting between t2g and eg states in the crystal field

High-spin (HS) state Fe2+ (3d6)

The observed distinctions can be 

ascribed to the difference in the 

distribution of Fe atoms over the 

crystal lattice
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It is necessary to reveal the influence of the crystal-field effects on

the spin state of iron in the intercalated and substituted compound

based onTaCh2
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➢ Polycrystalline samples were synthesized by solid-phase reaction method. Single

crystals by using a modified Bridgman method.

➢X-Ray examination: Bruker D8 Advance x-ray diffractometer.

➢Neutron powder diffraction measurements in magnetic fields up to 50 kOe

(WAND diffractometer, High Flux Isotope Reactor, ORNL, USA), and DMS

diffractometer H = 28 kOe, Spallation Source SINQ, PSI, Switzerland).

➢ DC magnetization measurements: SQUID MPMS (70 kOe), MPMS (90 kOe),

Quantun Design, USA

➢The transversal magnetoresistance in magnetic fields up to 100 kOe, DMS-1000

system, Dryogenic Ltd, UK.

Sample preparation and research methods :
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