

ADVANCED COLD NEUTRON SOURCES AT THE REACTOR PIK : (STATUS AND DEVELOPMENT PROSPECTS)

VICTOR MITYUKHLYAEV, <u>MIKHAIL ONEGIN</u>, BORIS KISLITSIN, VYACHESLAV SOLOVEY

Sino-Russia meeting SRNS-2024

8-11 October 2024

HIGH-FLUX REACTOR PIK

100 MW power D_2 O reflector Thermal neutron flux density in the reflector - about $1.2*10^{15}$ n*cm^{-2*}s⁻¹ Fuel in the copper-beryllium matrix: $UO_{2,}$ 90% enrichment

1 - central channel;

- 10 horizontal experimental channels;
- (3 through channels)
 - 6 inclined experimental channels;
 - 6 vertical experimental channels.

PNPI got the final approval from regulatory bodies for start-up of the new high-flux beam reactor PIK and got a license for operation during the following 5 years. The first criticality of PIK reactor on February 2011 Reactor full power is expected on 2026-2027

Distribution of unperturbed neutron fluxes F and heat load Qγ in the reactor at 100MW

Reactor Neutron Beams layout

- F1 Flux density of fast neutrons E > 5 keV.
- F2 Flux density of epithermal neutrons

5 keV > E > 0.6 eV.

F3 - Flux density of thermal neutrons E < 0.6 eV.

CNS HEC-3 layout at PIK reactor (level +2100 mm) 1989 year

Moderator chamber

CNS design key points

- Neutron calculation
 - CNS neutron performances (moderator and MC shape optimization, brightness, CN flux density, heat load)
- Thermal-hydraulic calculation
 Moderator temperature, heat removal, CNS elements temperature
- Stress analysis

✓ Stresses in CNS in-pile part at working condition

Safety analysis report (SAR)
 ✓ Hydrogen and Nuclear safety

Cross-sections of inelastic scattering of neutrons on H and D

 $\sigma_{para} \cong 1.5 \text{ b} \rightarrow l \cong \mathbf{16} \text{ cm}$

 $\sigma_{ortho} \cong 55 \,\mathrm{b} \rightarrow l \cong 0.4 \,\mathrm{cm}$

 $\sigma_{ortho} \cong 7 \,\mathrm{b} \rightarrow l \cong 2.9 \,\mathrm{cm}$

 $\sigma_{para} \cong 6 \text{ b} \rightarrow l \cong \mathbf{3.3} \text{ cm}$

Flux field for cold neutrons. LD₂ chamber

R=11.6 cm **V=6.5 l**

Cold neutrons $\lambda > 4$ Å.

$$\Phi_{cold max} = 2.92 \cdot 10^{14} \, cm^{-2} s^{-1}$$

Using displacer for increasing the flux of cold neutrons released from the chamber into the channel

 $\Phi_{cold max} = 1.81 \cdot 10^{14} \, cm^{-2} s^{-1}$

38% decrease comparing to chamber without displacer

Neutron optimization calculation

Volume, liters	Ver. channel inner diameter, mm		
10	284		
20	352		
30	400		

Brightness for different CNS volume

CNS HEC-3 brightness and Gain

7.4*10¹² n cm⁻² s⁻¹ sr⁻¹

Heat load

		CNS Chamber (Al)	CNS LD ₂	Displacer	Pipes (AI) Z<100 cm	Pipes Center. (Al)	Pipes (LD ₂) Z<100 cm
<i>m</i> , g		3544	4182	640	2273	232	258
Δ <i>Ε</i> , W	n+γ	2001(15)	1882(15)	323(5)	451(7)	130(2)	43(1)
	β	1128(6)		251(3)	169(2)	110(1)	
Total by components		3129(21)	1882(15)	574(8)	620(9)	240(3)	43(1)
Total CNS, W				6488	3		
Δ <i>Ε</i> , W/g	n+γ	0,565	0,450	0,505	0,199	0,560	0,167
	β	0,318		0,392	0,074	0,474	
Specific heat load		0,883	0,450	0,897	0,263	1,034	0,167
Heat load in CNS with light water neutron reflector							

- 6165 W Start-up reactor core
- 5590 W Full loaded reactor core
- 3220 W CNS in "warm" mode

Old CNS – heat load 4,0 -5,0 kW

Differential brightness for different lead shielding

Integral brightness and heat load (Pb)

Lead thickness, cm	Brightness, n/cm²s str	Reduction, %	Heat load, W	Reduction, %
0	7.42 10 ¹²		6488	
2	7.06 10 ¹²	5	5201	20
3	6.86 10 ¹²	7,5	4900	24,5
4	6.71 10 ¹²	9,5	4703	27,5

CNS comparative parameters

Параметр	ANSTO	PNPI	ILL (V / H)
Reactor power, MW	20	100 (ver. ГЭК-3)	57
<i>Thermal neutron flux at CNS location,</i> n cm ⁻² c ⁻¹	1,65*10 ¹⁴	4,0 10 ¹⁴	4,6x10 ¹⁴ / 8x10 ¹⁴
Cold neutron flux at reactor face, $\lambda > 4$ Å, n cm ⁻² c ⁻¹	(1,8-2,5) 10 ¹⁰	6,0 10 ¹⁰	~10 ¹⁰ /4 × 10 ^{10 *)} *) Capture flux
Cold neutron flux at neutron guide hall, $\lambda > 4$ Å, n cm ⁻² c ⁻¹	6,4 10 ⁹	≈10 ¹⁰	5,4 10 ⁸ , (H18) 5,4 10 ⁹ , (H17) 5,0 10 ⁶ , (H14)
Moderator	LD ₂	LD_2	LD ₂
Moderator Temperature, K	23	19,5-25	25/25
Moderator chamber volume, I	20	24	20/6
Total heat load, kW	4-5	6,5-7,1	6/3
CNS standby mode	yes	yes	no

Principal layout of thermosiphon

- 1, 3, 4 heat exchanger (pipe in pipe);
 - 2-CNS chamber;
- 5 heat exchanger with jacket and counter-flow of helium.
 - Flow of liquid deuterium
 - Flow of helium through the heat exchanger
 - Flow of helium through the deuterium chamber
 - Flow of helium to cryogenic system

Heat remove principle

Chamber and Heat Exchanger

Deuterium chamber

- 1 Helium supply tube
- 2 Supply pipes
- 3 Helium case
- 4 Deuterium chamber
- 5 Cavity (displacer)

Main parameters of thermosiphon

He flow rate, g/s	LD ₂ flow, g/s	LD ₂ max. temperature, K	Aver. LD ₂ Temperature in chamber, K	Min. Temperature LD ₂ , K	He inlet temp., K	Pressure D ₂ , bar
100+ 100	113	23,3	21,2	19,5	16,0	1,4
100+ 100 40 -	116	26,4	24,4	22,9	19,0	2,9

T_{boil}= 25-26 K at saturation pressure 1,45 -1,9 bar

Main CNS components

111

Ш

I – CNS Support tube
1 - Reactor tank
2 - Connecting branch PIK
00.020 (support pipe)
3 - Adapter flange
II – Vacuum containment
III – Thermosiphon

CNS for HEC-3 at reactor PIK (total view)

- 1 Core case
- 2 Heavy water reflector tank,
- 3 Connecting branch PIK
- 00.020 (support pipe),
- 4 Water-concrete shielding,
- 5 Steel case of reactor shaft,
- 6 Reactor radiation shielding (concrete),
- 7 HEC-3 channel,
- 8 Vacuum containment,
- 9 Thermosiphon.

CNS external systems pipes in reactor shaft

- 1 Support flange PIK.00.020
- 2 Drive platform (level +12080)
- 3 Assembly platform (level +9000)
- 4 Rail track
- 5 Support crossbar
- 6 Deuterium pipes
- 7 Vacuum pipes
- 8 Cryogenic helium pipes (inlet)
- 9 Cryogenic helium pipes (outlet)

Hall of Inclined channels (+7500 level, upper part +10800)

In the heavy water reflector tank. View on HEC-3.

Mockup of the vacuum containment

Temperature of vacuum containment and HEC-3 channel

In-Pile part of CNS HEC-3

Examination of CNS Chamber

Composition of the complex CNS HEC-3

- 1. In-pile part (vacuum containment);
- 2. Cryogenic helium system and cryogenic pipes;
- 3. Deuterium system;
- 4. Vacuum system;
- 5. Protection gaseous system;
- 6. Gas analysis system:
- 7. CNS protection and control system;
- 8. Power supply system;
- 9. Control air system;
- 10. Recycled cooling water system (100E and 100A buildings);
- 11. Gas discharge system.

REACTOR PIK CNS-3 PROJECT

Main systems of the CNS HEC-3 complex

	Components and systems	Availability
1	Buildings & construction works	completed
2	Auxiliary systems (electricity, recycled cooling water, instrument air etc.	Completed 80%
3	Cryogenic plant (LINDE) mounting is ready	Completed 90%
4	External systems (Deuterium, Vacuum, Helium blanketing)	Mounting 70%
5	Vacuum containment	Under manufacturing
6	CNS Thermosiphon (Cryogenic vertical insert)	Completed
7	CNS Protection and control system	Mounting 70 %
8	Cryogenic connected pipelines (TS-Linde)	Completed 50%

Shematic diagram of the CNS complex

Layout of the CNS equipment in the 100E building

CNS systems

Pipelines between 100A and 100E buildings

Linde cryogenic equipment in 100E

External Hydrogen and Vacuum systems

Layout of experimental setups in the Inclined and Horizontal halls

Layout of the main and experimental reactor halls with neutron guide system and neutron stations.

N-3 N-2 DEDM Neutrino D1 KINA Neutrino D2 KINA N-1 KINA Neutrino D3 KINA Neutrino D4 KINA N-3 K-2 DEDM SESANS SESANS N-4 1 m 10 m	HARMONY HARMONY Nuclear physics Large scale Structure Spectoscopy	SEM Tenzor Membrana-2
Name	Wavelength range, Å	Beam size at sample position, mm2
1.Reflectometer of polarized neutrons NeRo	1.5	5×50
2. Small angle spin echo SESANS	3.5 - 12	10×10
3. Spectrometer IN-4	2 – 13	30×30
4. Reflectometer Sonata	2 - 20	10×10
5. Reflectometer with vector polarization analyser HARMONY	2 - 20	0.1×100
6. Small angle scattering Membrana-2	4.5 - 20	15×15
7. Small angle diffractometer of polarized neutrons Tenzor	4.5 - 30	30×30
8. Spin echo spectrometer SEM	4.5 - 12	30×60
0 Acummetry	1 10	20×100

Sino-Russia meeting on frontiers of neutron scattering

D₂ liquid CNS-2 (project)

Reactor PIK

THANK YOU FOR YOUR ATTENTION!!!!